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Preliminaries

We start with a set of ordered pairs {⟨X , Y ⟩, ⟨X , Y ⟩, ⟨X , Y ⟩, ..., ⟨X , Y ⟩}.

You can think of X  and Y  as

real numbers (facts about each of the the n individuals in the population)

or as random variables (probability distributions over facts about n individuals in a

sample),

all the maths will apply equally. (I will return to this fact and comment on it).

The CEF minimises w

Some algebraic facts

We write the equality:

Y = f (X ) + w

Where Y  and X  are known, but w  depends on our choice of f .
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Minimisation problem

Suppose we want to solve

w ↔ (Y − f (X ))

The solution is f (X ) = E[Y ∣ X ]. The proof of this is in appendix A. Suppose we specify 

f (X ) as such, we then get:

Y = E[Y ∣ X ] + w

Now f  is known and w  is known (by the subtraction w = Y − E[Y ∣ X ]).

The LRM minimises (e + w )

Some algebraic facts

Now we write the following equality:

E[Y ∣ X ] = β + β X + e

This says that E[Y ∣ X ] is equal to a linear function of X  plus some number e .

We then have

As before w  is known, whereas e  is a function of β  and β .

Here e  is the distance, for observation i, between the LRM and the CEF; while w  is the distance

between the CEF and the actual value of Y . We can then call u = e + w  the distance

between the LRM and the actual value.
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We can also see that E[u ∣ x ] = 0 is equivalent to e = 0, i.e. the CEF and the LRM occupy

the same coordinates.

Minimisation problem

Suppose we want to solve

(e + w ) ↔ (Y − β − β X )

The solution is

I prove this in appendix B. (It's possible to prove an analogous result in general using matrix

algebra, see appendix C.)

Suppose we specify that β  and β  are equal to these solution values. Now that β  and β  are

known, e  is known too (by the subtraction e = E[Y ∣ X ] − β − β X ). As before, w  is

known.

Thus, in our regression equation,

all of Y , X , β , β , e  and w  (and thus u ), are known.

Comments

A few things to note at this point. Whether we are using real numbers of random variables does

not matter for anything we've said so far. All we have used are the expectation and summation

operators and their properties. Textbooks often warn about the important distinction between

the sample and the population, but as far as these algebraic facts are concerned the difference

is immaterial! This confused me for a long time before I understood it.
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The second thing to note is that I have not used "hat" notation (as in ). Instead I have described

the results of optimisation procedures carefully using words, like "the solution to this

minimisation problem is ...".

This is because the way standard econometrics uses the hat has been the source of much

confusion for me.

Inconsistent hats

Econometrics textbooks, within the same sentence or paragraph, routinely use the hat in two

ways which seem to me to be incompatible.

The 'loss function minimiser' usage

Claim A (Stock and Watson (2015), p. 187):

This is consistent with Claim B (Stock and Watson p. 163):

Claim A tells us  and  are loss function minimisers. Claim B tells us that  is the value

obtained when you compute the values of b  and b  which minimise a loss function, and plug

them into the regression function.

All very well so far.

The 'sample analogue' usage

However, elsewhere (Stock and Watson p. 158) we have Claim C:

β̂

The OLS estimators,  and  are the values of b  and b  that minimise 

(Y − b − b X ) .
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So far as I can tell, the "population regression intercept" and "population regression slope" are

defined as the values that minimise u  , i.e. β  and β  are also the solutions which minimise 

(Y − b − b X ) . So, by the loss function minimiser usage above, we get: β =  and 

β = . (Otherwise, if we take the population LRM to be simply some equality in the

population, where β , β  and u  can take any consistent values, I don't see what sense can be

made of the expressions "sample analogue of β ", say.)

However, β =  and β =  is not compatible with Claim D, which makes the sample

analogue usage (Stock and Watson, p. 163):

This quote implies that  and  are random variables, which couldn't possibly be equal to the

real numbers β  and β .

Furthermore, if the hat is supposed to mean "sample analogue", we would expect  to be the

sample counterpart of Y , that is, we would expect  to be the ith value of Y  in a sample. Yet

we have seen above that the loss function minimiser usage defines  as a "predicted value" of 

Y  (given the loss-function-minimising  and ).

One (bad) solution

The following interpretation makes sense of some of the claims economists make. Some rather

important ones will have to go. I haven't found a way to make sense of all the claims, they seem

incompatible to me.

We think of

Y = β + β X + u

Where β + β X  is the population regression line or population regression function, β

is the intercept of the population regression line, and β  is the slope of the population

regression line.
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The OLS estimators,  and , are sample counterparts of the population coefficients 

β  and β . Similarly, the OLS regression line + X  is the sample counterpart of

the population regression line β + β X  and the OLS residuals  are sample

counterparts of the population errors u .
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Not as a regression equation, but as a complete causal account of everything causally affecting 

Y . For example, if there are ϕ things causally affecting Y , we have:

Y = β + β X + β A + β B + ... + β ϕ

We can think of this claim as equivalent to an infinite lists of counterfactuals, giving the

potential values of Y  for every combination of values of the causal factors X ,A,B..., ϕ. It also

makes the claim that nothing else has a causal effect on Y .

(if we think the world is non-deterministic, the claim becomes 

Y = β + β X + β A + β B + ... + β ϕ + ε , where ε  are i random variables, and we

have a list of counterfactuals giving the potential distributions of Y  for every combination of

values of the causal factors.)

That's a rather huge claim. In any realistic case, causal chains are incredibly long and entangled,

so that basically everything affects everything else in some small way. So the claim often

amounts to an entire causal model of the world. This makes sense of why economists keep

calling the β  coefficients "unobservable" - they truly are nearly impossible to observe under this

interpretation.

Let's go back to Y = β + β X + u  (1), which, remember, is a huge causal claim and not the

linear regression function. We can keep Claim A and Claim B (though it's not clear what use they

will be). Claims C and D immediately go out the window, since (1) has nothing to do with

regression coefficients, let alone the sample counterparts of regression coefficients.

Under this interpretation, the claim:

is completely false. It would be shocking (!) if the true causal effects β  and β  were equal to

some simple function of the moments of Y  and X .

Claims A and B imply:
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Now, the assumption E[u ∣ x ] = 0, which is needed to relate  to β , is a huge and unlikely

causal claim.
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