Why ain't causal decision theorists rich? Some speculations

Note added on 24 June 2018: This is an old post which no longer reflects my views. It likely contains mistakes.

I.

CDT is underspecified

Standard causal decision theory is underspecified. It needs a theory of counterfactual reasoning. Usually we don’t realise that there is more than one possible way to reason counterfactually in a situation. I illustrate this fact using the simple case Game, described below, where a CDT agent using bad counterfactuals loses money.

But before that I need to set up some formalisms. Suppose we are given the set of possible actions an agent could take in a situation. The agent will in fact choose only one of those actions. What would have happened under each of the other possible actions? We can think of the answer to this question as a list of counterfactuals.

Let’s call such a list K of counterfactuals a “causal situation” (Arntzenius 2008). The list will have n elements when there are n possible actions. Start by figuring out what all the possible lists of counterfactuals K are. They form a set P which we can call the “causal situation partition”. Once you have determined P, then for each possible K, figure out what the expected utility:

E[UK(A)]=jCr(OjAK)U(Oj)E[U_K(A)]= \sum_{j}Cr(O_j | A \land K)*U(O_j)

of each of your n acts {A1,A2,...,An}\{A_1,A_2,...,A_n\} is. (Where OjO_j are the outcomes, U(.)U(.) is the utility function and Cr(.)Cr(.) is the credence function.) Then, take the average of these expected utilities, weighted by your credence in each causal situation:

E[U(A)]=KCr(K)E[UK(A)]E[U(A)]=\sum_{K} Cr(K) * E[U_K(A)]

Perform the act with the highest E[U(A)]E[U(A)].

What will turn out to be crucial for our purposes is that there is more than one causal situation partition P one can consistently use. So it’s not just a matter of figuring out “the” possible Ks that form “the” P. We also need to choose a P among a variety of possible Ps.

In other words, there is the following hierarchy:

  • Choose a causal situation partition P out of the set of possible partitions {P1,P2,...,Pk}\{P_1,P_2,...,P_k\} (the causal situation superpartition?).
  • This partition defines a list of possible causal situations: P={K1,K2,...,Kj}P = \{K_1,K_2,...,K_j\}.
  • Each causal situation K defines a list of counterfactuals of length n: K={C1,C2,...,Cn}K = \{C_1,C_2,...,C_n\}. Where each counterfactual CiC_i is of the form “Ai ⁣XA_i \mathbin{\square\!\mathord\to} X”. You have a credence distribution over Ks.

Game

Now let’s consider the following case, Game, also from Arntzenius (2008):

Harry is going to bet on the outcome of a Yankees versus Red Sox game. Harry’s credence that the Yankees will win is 0.9. He is offered the following two bets, of which he must pick one:

(1) A bet on the Yankees: Harry wins $1 if the Yankees win, loses $2 if the Red Sox win

(2) A bet on the Red Rox: Harry wins $2 if the Red Sox win, loses $1 if the Yankees win.

What are the possible Ps? According to Arntzenius, they are:

P1: Yankees Win, Red Sox Win

P2: I win my bet, I lose my bet

To make this very explicit using the language I describe above, we can write that the set of causal situations (the “superpartition”) is {Pb,Pw}\{ P_b , P_w\}. (I use PbP_b for “baseball” and PwP_w for “win/lose”.)

Let’s first deal with the baseball partition: Pb={Ky,Ks}P_b= \{K_y,K_s\}. (I use KyK_y for “Yankees win” and KsK_s for “Sox win”.)

Ky={C1,C2}K_y = \{C_1,C_2 \}
C1=Harry bets on the Yankees ⁣Harry +1$C_1 = \text{Harry bets on the Yankees} \mathbin{\square\!\mathord\to} \text{Harry +1\$}
C2=Harry bets on the Sox ⁣Harry -1$C_2 = \text{Harry bets on the Sox} \mathbin{\square\!\mathord\to} \text{Harry -1\$}

Ks={C3,C4}K_s = \{C_3,C_4 \}
C3=Harry bets on the Yankees ⁣Harry -2$C_3 = \text{Harry bets on the Yankees} \mathbin{\square\!\mathord\to} \text{Harry -2\$}
C4=Harry bets on the Sox ⁣Harry +2$C_4 = \text{Harry bets on the Sox} \mathbin{\square\!\mathord\to} \text{Harry +2\$}

And Harry has the following credences1:

Cr(Ky)=0.9Cr(K_y)=0.9
Cr(Ks)=0.1Cr(K_s)=0.1

When using this partition and the procedure described above, Harry finds that the expected value of betting on the Yankees is 70c, whereas the expected value of betting on the Sox is -70c, so he bets on the Yankees. This is the desired result.

And now for the win/lose partition: Pw={Kw,Kl}P_w= \{K_w,K_l\}. (I use KwK_w for “Harry wins his bet” and KlK_l for “Harry loses his bet”.)

Kw={C5,C6}K_w = \{C_5,C_6 \}
C5=Harry bets on the Yankees ⁣Harry +1$C_5 = \text{Harry bets on the Yankees} \mathbin{\square\!\mathord\to} \text{Harry +1\$}
C6=Harry bets on the Sox ⁣Harry +2$C_6 = \text{Harry bets on the Sox} \mathbin{\square\!\mathord\to} \text{Harry +2\$}

Kl={C7,C8}K_l = \{C_7,C_8 \}
C7=Harry bets on the Yankees ⁣Harry -2$C_7 = \text{Harry bets on the Yankees} \mathbin{\square\!\mathord\to} \text{Harry -2\$}
C8=Harry bets on the Sox ⁣Harry -1$C_8 = \text{Harry bets on the Sox} \mathbin{\square\!\mathord\to} \text{Harry -1\$}

What are Harry’s credences in KwK_w and KlK_l? It turns out that it doesn’t matter. Arntzenius writes: “no matter what Cr(Kw)Cr(K_w) and Cr(Kl)Cr(K_l) are, the expected utility of betting on the Sox is always higher”.

So Harry should bet on the Sox regardless of his credences. But the Yankees win 90% of the time, so once Harry has placed his bet, he will correctly infer that Cr(Kl)=0.9Cr(K_l)=0.9. Harry will lose 70c in expectation, and he can foresee that this will be so! It’s because he is using a bad partition.

Predictor

Now consider the case Predictor, which is identical to Game except for the fact that:

[…] on each occasion before Harry chooses which bet to place, a perfect predictor of his choices and of the outcomes of the game announces to him whether he will win his bet or lose it.

Arntzenius crafts this thought experiment as a case where, purportedly:

  • An evidential decision theories predictably loses money.2
  • A causal decision theorist using the baseball partition predictably wins money.

I’ll leave both of these claims undefended for now, taking them for granted.

I’ll also skip over the crucial question of how one is supposed to systematically determine which partition is the “correct” one, since Arntzenius provides an answer3 that is long and technical, and I believe correct.

What is the point of proposing Predictor? We know that EDT does predictably better than CDT in Newcomb. Predictor is a case where CDT does predictably better than EDT, provided that it uses the appropriate partition. But we already knew this from more mundane cases like Smoking lesion (Egan 2007).

II.

The value of WAYR arguments

Arntzenius’ view appears to be that “Why ain’cha rich?”-style arguments (henceforth WAYRs) give us no reason to choose any decision theory over another. There is one sense in which I agree, but I think it has nothing to do with Predictor, and, more importantly, that this is not an argument for being poor, but instead a problem for decision theory as currently conducted.

One way to think of decision theory is as a conceptual analysis of the word “rational”, i.e. a theory of rationality. Some causal decision theorists say that in Newcomb, rational people predictably lose money. But this, they say, is not an argument against CDT, for in Newcomb, the riches were reserved for the irrational: “if someone is very good at predicting behavior and rewards predicted irrationality richly, then irrationality will be richly rewarded” (Gibbard and Harper 1978).

This line of reasoning appearts particularly compelling in Arntzenius’ Insane Newcomb:

Consider again a Newcomb situation. Now suppose that the situation is that one makes a choice after one has seen the contents of the boxes, but that the predictor still rewards people who, insanely, choose only box A even after they have seen the contents of the boxes. What will happen? Evidential decision theorists and causal decision theorists will always see nothing in box A and will always pick both boxes. Insane people will see $10 in box A and $1 in box B and pick box A only. So insane people will end up richer than causal decision theorists and evidential decision theorists, and all hands can foresee that insanity will be rewarded. This hardly seems an argument that insane people are more rational than either of them are.

But, others will reply: “The reason I am interested in decision theory is so that I can get rich, not so that I can satisfy some platonic notion of rationality. If I were actually facing that case, I’d rather be insane than rational.”

What is happening? The disputants are using the word “rational” in different ways. When language goes on holiday to the strange land of Newcomb, the word “rational” loses its everyday usefulness. This shows the limits of conceptual analysis.

Instead, we should use different words depending on what we are interested in. For instance, I am interested in getting rich, so I could say that act-decision theory is the theory that tells me how to get rich if I find myself in a particular situation and am not bound by any decision rule. Rule-decision theory would be the theory that tells you which rules are best for getting rich. Inspired by Ord (2009), we could even define global decision theory as the theory which, for any X, tells you which X will make you the most money.

Which X to use will depend on the context. Specifically, you should use the X which you can choose, or causally intervene on. If you are choosing a decision rule, for example by programming an AI, you should use rule-decision theory. (If you want to think of “choosing a rule for the AI” as an act, act-decision theory will tell you to choose the rule that rule decision theory identifies. That’s a mere verbal issue.) If you are choosing an act, such as deciding whether to smoke, ou should use act-decision theory.

Kenny Easwaran has similar thoughts:

Perhaps there just is a notion of rational action, and a notion of rational character, and they disagree with each other. That the rational character is being the sort of person that would one-box, but the rational action is two-boxing, and it’s just a shame that the rational, virtuous character doesn’t give rise to the rational action. I think that this is a thought that we might be led to by thinking about rationality in terms of what are the effects of these various types of intervention that we can have. […]

I think one way to think about this is […] trying to understand causation through what they call these causal graphs. They say if you consider all the possible things that might have effects on each other, then we can draw an arrow from anything to the things that it directly affects. Then they say, well, we can fill in these arrows by doing enough controlled experiments on the world, we can fill in the probabilities behind all these arrows. And we can understand how one of these variables, as we might call it, contributes causally to another, by changing the probabilities of these outcomes.

The only way, they say, that we can understand these probabilities, is when we can do controlled experiments. When we can sort of break the causal structure and intervene on some things. This is what scientists are trying to do when they do controlled experiments. They say, “If you want to know if smoking causes cancer, well, the first thing you can do is look at smokers and look at whether they have cancer and look at non-smokers and look at whether they have cancer.” But then you’re still susceptible to the issues that Fisher was worrying about. What you should actually do if you wanted to figure out whether smoking causes cancer, is not observe smokers and observe non-smokers, but take a bunch of people, break whatever causes would have made them smoke or made them not smoke, and you either force some people to smoke or force some people not to smoke.

Obviously this experiment would never get ethical approval, but if you can do that – if you can break the causal arrows coming in, and just intervene on this variable and force some people to be smokers and force others to not be smokers, and then look at the probabilities – then we can understand what are the downstream effects of smoking.

In some sense, these causal graphs only make sense to the extent that we can break certain arrows, intervene on certain variables and observe downstream effects. Then, I think, in all these Newcomb type problems, it looks like there’s several different levels at which one might imagine intervening. You can intervene on your act. You can say, imagine a person who’s just like you, who had the same character as you, going into the Newcomb puzzle. Now imagine that we’re able to, from the outside, break the effect of that psychology and just force this person to take the one box or take the two boxes. In this case, forcing them to take the two boxes, regardless of what sort of person they were like, will make them better off. So that’s a sense in which two-boxing is the rational action.

Whereas if we’re intervening at the level of choosing what the character of this person is before they even go into the tent, then at that level the thing that leaves them better off is breaking any effects of their history, and making them the sort of person who’s a one-boxer at this point. If we can imagine having this sort of radical intervention, then we can see, at different levels, different things are rational.

To what extent we human beings can intervene at the level our acts, or at the level of our rules, is, I suspect, an empirically and philosophically deep issue. But I would be delighted to be proven wrong about that.

A problem for any decision theory?

I think using these distinctions can solve much of the confusion about WAYRs in Newcomb and analogous cases. But Insane Newcomb hints at a more fundamental problem. Both EDT and CDT can be made vulerable to an WAYR, for example in Insane Newcomb.

Moreover, any decision theory can be made vulnerable to WAYRs. Imagine the following generalised Newcomb problem.

The predictor has a thousand boxes, some transparent and some opaque, and the opaque boxes have arbitrary amounts of money in them. Suppose you use decision theory X, which, conditional on your credences, determines a certain pattern of box-taking (e.g. take box 1, leave boxes 2 and 4, take boxes 3 and 5, etc). The predictor announces that if he has predicted that you will take boxes in this pattern, he has put $0 in all opaque boxes, while otherwise he has put $1000 in each opaque box.

This case has the consequence that X-decision theorists will end up poor. Since X can be anything, a sufficiently powerful predictor can punish the user of any decision theory. Newcomb is a special case where the predictor punishes causal decision theorists.

So I’m inclined to say that there exists no decision theory which will make you rich in all cases. So we need to be pragmatic and choose the decision theory that works best given the cases we expect to face. But this just means using the meta-decision theory that tells you to do that.

  1. This isn’t fully rigorous, since Ks are lists of (counterfactual) propositions, so you can’t have a credence in a K. What I mean by Cr(Ky)=0.9Cr(K_y)=0.9 is that Harry has credence 0.9 in every C in K, and (importantly) he also has credence 0.9 in in their conjunction C1C2C_1 \land C_2. But I drop this formalism in the body of the post, which I feel already suffers from an excess of pedantry as it stands! 

  2. This is denied by Ahmed and Price (2012), but I ultimately don’t find their objection convincing. 

  3. See section 6, “Good and Bad Partitions”. Importantly, this account fails to identify any adequate partition in Newcomb, so the established conclusion that causal decision theorists tend to lose money in Newcomb still holds. 

June 28, 2017

QALYs/$ are more intuitive than $/QALYs

Cross-posted to the effective altruism forum.

Summary

Cost-effectiveness estimates are often expressed in $/QALYs instead of QALYs/$. But QALYs/$ are preferable because they are more intuitive. To avoid small numbers, we can renormalise to QALYs/$10,000, or something similar.

Cost-effectiveness estimates are often expressed in $/QALYs

Four examples:

GiveWell, “Errors in DCP2 cost-effectiveness estimate for deworming”:1

Eventually, we were able to obtain the spreadsheet that was used to generate the $3.41/DALY estimate. That spreadsheet contains five separate errors that, when corrected, shift the estimated cost effectiveness of deworming from $3.41 to $326.43. We came to this conclusion a year after learning that the DCP2’s published cost-effectiveness estimate for schistosomiasis treatment – another kind of deworming – contained a crucial typo: the published figure was $3.36-$6.92 per DALY, but the correct figure is $336-$692 per DALY. (This figure appears, correctly, on page 46 of the DCP2.)

DCP3, “Cost-Effectiveness of Interventions for Reproductive, Maternal, Newborn, and Child Health”:

dcp3_qaly

Michael Dickens, “Charities I would like to see”:

This would cost about $5 per rat per month plus an opportunity cost of maybe $500 per month for the time spent, which works out to another $5 per rat per month. Thus creating 1 rat QALYs costs $120 per year, which is $240 per human QALYs per year.

Deworming treatments cost about $30 per DALY. Thus a rat farm looks like a fairly expensive way of producing utility.

GiveWell, “Mass Distribution of Long-Lasting Insecticide-Treated Nets (LLINs)” uses cost per life saved:

LLIN distribution is one of the most cost-effective ways to save lives that we’ve seen. Our best guess estimate comes out to about $3,000 per equivalent under-5 year old life saved (or, excluding developmental impacts, $7,500 per life saved) using the total cost per net in the countries we expect AMF to work over the next few years.

QALYs/$ are preferable to $/QALYs

As long as we compare opportunities to do good by looking at the ratio of their cost-effectiveness, $/QALYs is equivalent to QALYs/$.

However, even if we know that we ought to be using ratios of cost-effectiveness, our System 1 may sometimes implicitly be using differences (subtractions) of cost-effetiveness. This can lead to problems when using $/QALYs which are entirely avoided if we use QALYs/$.

Suppose we have 20 charities aa-tt whose cost-effectiveness follows a log-normal distribution. I have plotted bar graphs of these values expressed in $/QALYs and in QALYs/$.

d_per_q

Looking at this graph, we are immediately attracted to the right-hand side. That’s where the big, visible differences in bar height are. So we feel that the high-hand side is where most of the action is. We may have the intuition that most of the gains are to be had by switching away from from charities like oo, bb, and pp, in favour of charities like gg, ll and mm. This is because we would implicitly be using differences instead of ratios.

In reality, of course, what’s crucial is the left-hand side of the graph. Charity qq produces about 9 times more value than charity aa, while charity bb is only 1.5 times better than charity pp.

q_per_d

If we had used QALYs/$, this would have been easier to see. Here, the importance of picking the best charity (rather than a merely good one) stands out visually.

When we use QALYs/$, both products and subtractions give us the correct result. That is why QALYs/$ are preferable.

Small numbers

One potential problem with using QALYs/$ is that we end up with very small numbers. Small numbers can be unintuitive. It’s hard to picture 0.05 and 0.1 of something, and easy to picture 20 and 10 of something.

But this problem can easily be solved by multiplying the small numbers by a large constant. This is what we did with the Oxford Prioritisation Project, and it’s also what Toby Ord does in “The moral imperative towards cost-effectiveness”.

Further reading

By the way, this exact phenomenon is well documented in the domain of car fuel efficiency. See “The MPG Illusion”, Science Vol. 320, Issue 5883, pp. 1593-1594, DOI: 10.1126/science.1154983.

Bastian Stern also has posts explaining how $/QALYs create problems when we use arithmetic means, and when we look at proportional improvements between charities. This is not surprising, since arithmetic means and proportions are essentially based on subtraction.

Recommendation

Wherever possible, we should stop using $/QALYs and use QALYs/$10,000, or something similar.

  1. Of course, there are also many examples of people correctly using QALYs/$. See for instance “The moral imperative towards cost-effectiveness”, or chapter 3 of “Doing Good Better”. 

June 15, 2017

Self-locating beliefs vs loss of discriminating power

sleeping beauty

In Adam Elga’s 2000 paper “Self-locating belief and the Sleeping Beauty problem”, he opens with:

In addition to being uncertain about what the world is like, one can also be uncertain about one’s own spatial or temporal location in the world. My aim is to pose a problem arising from the interaction between these two sorts of uncertainty, solve the problem, and draw two lessons from the solution.

His answer to the sleeping beauty problem is 1/3. But this violates conditionalisation and reflection. His diagnosis is that this has to do with the self-locating nature of the beliefs:

The answer is that you have gone from a situation in which you count your own temporal location as irrelevant to the truth of H, to one in which you count your own temporal location as relevant to the truth of H. […] [W]hen you are awakened on Monday, you count your current temporal location as relevant to the truth of H: your credence in H, conditional on its being Monday, is 1/ 2, but your credence in H, conditional on its being Tuesday, is 0. On Monday, your unconditional credence in H differs from 1/ 2 because it is a weighted average of these two conditional credences — that is, a weighted average of 1/2 and 0.

But Arntzenius (2003) shows that the problem has nothing to do with the self-locating nature of the beliefs and everything to do with the loss of discriminating power of experiences.

Strict conditionalization of one’s degrees of belief upon proposition X can be pictured in the following manner. One’s degrees of belief are a function on the set of possibilities that one entertains. Since this function satisfies the axioms of probability theory it is normalized: it integrates (over all possibilities) to one. Conditionalizing such a function on proposition X then amounts to the following: the function is set to zero over those possibilities that are inconsistent with X, while the remaining nonzero part of the function is boosted (by the same factor) everywhere so that it integrates to one once again. Thus, without being too rigorous about it, it is clear that conditionalization can only serve to “narrow down” one’s degree of belief distribution (one really learns by conditionalization). In particular a degree of belief distribution that becomes more “spread out” as time passes cannot be developing by conditionalization, and a degree of belief distribution that exactly retains its shape, but is shifted as a whole over the space of possibilities, cannot be developing by conditionalization.

So we need to distinguish problems with spreading from problems with shifting.

shifting

Self-locating beliefs undergo shifting in a perfectly straightforward manner which has nothing to do with sleeping beauty type cases:

suppose that one is constantly looking at a clock one knows to be perfect. […] At any given moment one’s degrees of belief […] will be entirely concentrated on one temporal location, namely, the one that corresponds to the clock reading that one is then seeing. And that of course means that the location where one’s degree of belief distribution is concentrated is constantly moving.

spreading

Beliefs can undergo spreading when the situation is such that there is a loss of discriminating power of experiences over time. In Shangri-La1,

there are two distinct possible experiential paths that end up in the same experiential state. That is to say, the traveler’s experiences earlier on determine whether possibility A is the case (Path by the Mountain), or whether possibility B is the case (Path by the Ocean). But because of the memory replacement that occurs if possibility B is the case, those different experiential paths merge into the same experience, so that that experience is not sufficient to tell which path was taken. Our traveler therefore has an unfortunate loss of information, due to the loss of the discriminating power of his experience.

The same thing is happening in sleeping beauty, contra Elga:

In the case of Sleeping Beauty, the possibility of memory erasure ensures that the self-locating degrees of belief of Sleeping Beauty, even on Monday when she has suffered no memory erasure, become spread out over two days.

It just so happened that Elga chose an example in which self-locating beliefs are “counted as relevant to the truth of H”. This caused confusion.

implication for bayesianism

The lesson from Arntzenius (2003) is that conditionalisation, understood as ereasing and re-normalising, is not a necessary condition of ratioanlity.

It’s a mistake to think of bayesian rationality as conditionalisation. The key maxim, that implied by Bayes’ theorem, is: ‘At each time, apportion your credences to your evidence’.

We can think of this as having an ‘original’ or ‘ur-prior’ credence distribution. At each time, you should update that ur-prior based on your total evidence E. E can come to contain less information, (you “lose evidence”) in cases of fogetting or loss of discriminating power. When you lose evidence, your credence distribution undergoes spreading.

constraints on ur-priors?

What norms constrain the ur-priors of rational agents? One possibility is the following. Think of possible worlds. Within each possible world, there are many experience-moments: one for each observer location and each time. When one is uncertain about about one’s own spatial or temporal location, one is uncertain about which experience-moment one finds oneself in within a possible world.

So one set of possible constraints are:

  • In accordance with the principal principle, your credence in each possible world should be equal to the objective chance of that world.
  • In accordance with a principle of indifference, your should apportion your credence in a world equally between all its possible experience-moments.
  1. “Every now and then, the guardians to Shangri La will allow a mere mortal to enter that hallowed ground. You have been chosen because you are a fan of the Los Angeles Clippers. But there is an ancient law about entry into Shangri La: you are only allowed to enter, if, once you have entered, you no longer know by what path you entered. Together with the guardians, you have devised a plan that satisfies this law. There are two paths to Shangri La, the Path by the Mountains, and the Path by the Sea. A fair coin will be tossed by the guardians to determine which path you will take: if heads you go by the Mountains, if tails you go by the Sea. If you go by the Mountains, nothing strange will happen: while traveling you will see the glorious Mountains, and even after you enter Shangri La, you will forever retain your memories of that Magnificent Journey. If you go by the Sea, you will revel in the Beauty of the Misty Ocean. But, just as you enter Shangri La, your memory of this Beauteous Journey will be erased and be replaced by a memory of the Journey by the Mountains. Suppose that in fact you travel by the Mountains. How will your degrees of belief develop? Before you set out your degree of belief in heads will be 1/2. Then, as you travel along the Mountains and you gaze upon them, your degree of belief in heads will be one. But then, once you have arrived, you will revert to having degree of belief 1/2 in heads. For you will know that you would have had the memories that you have either way, and hence you know that the only relevant information that you have is that the coin was fair. This seems a bizarre development of degrees of belief. For as you are traveling along the Mountains, you know that your degree of belief in heads is going to go down from one to 1/2. You do not have the least inclination to trust those future degrees of belief. Those future degrees of belief will not arise because you will acquire any evidence, at least not in any straightforward sense of “acquiring evidence.” Nonetheless, you think you will behave in a fully rational manner when you acquire those future degrees of belief. Moreover, you know that the development of your memories will be completely normal. It is only because something strange would have happened to your memories had the coin landed tails that you are compelled to change your degree of belief to 1/2 when that counterfactual possibility would have occurred.” 

June 13, 2017