Comment un individu peut-il faire une différence? Une mauvaise réponse, et deux bonnes

J’entends souvent des dialogues de ce genre quand il s’agit de faire un effort personnel pour aider les autres:

Alice: Face à toute la souffrance dans le monde, je me sens impuissante. Même si je changeais mon comportement, mon action individuelle ne résoudrait pas nos problèmes. Par exemple, même si je faisais un don pour aider un agriculteur pauvre au Kenya, d’autres ne donneront rien, et ce n’est pas grâce à moi que nous allons éliminer la pauvreté. Ce n’est pas à moi, mais aux puissants de ce monde d’agir.

Bernard: Si tout le monde raisonnait comme toi, nous ne ferions jamais rien pour aider les plus vulnérables. Au contraire, si chacun agit à son niveau, nous pouvons éliminer la pauvreté ensemble. Ainsi, en prenant partie à une action sociale, chacun peut changer les choses. Tu n’es donc pas impuissante.

Alice et Bernard font tous deux erreur. Nous ne sommes pas impuissants à être solidaires, mais ce n’est pas pour les raisons avancées bar Bernard.

Nous sommes tous des individus

J’ai de la sympathie pour la point de vue de Bernard. Alice doit avoir tort, car porter son raisonnement à sa conclusions aurait pour conséquence qu’il faudrait arrêter de travailler à tous les grands problèmes de l’humanité. Mais la réponse de Bernard est fallacieuse.

Nous sommes tous des individus. Je ne suis pas une société, vous n’êtes pas un état, aucun d’entre nous n’est un groupe ou une institution. Les actions dont nous pouvons décider sont des actions individuelles. Bien sûr, des individus peuvent influencer ces groupes, mais encore une fois, le choix de cette influence est finalement individuel. C’est le choix de voter, de se rendre à la réunion communale, ou d’aller manifester. La réplique “si tous agissent à leur niveau…” n’est pas opérante car personne ne peut décider si tous agissent ou non. Nous pouvons seulement décider d’agir nous-mêmes, ou de tenter de convaincre d’autres d’agir.

Distinguer deux objections

Afin d’expliquer pourquoi Alice a réellement tort, il faut distinguer deux objections différentes qui pourraient se cacher derrière ce discours.

Rapellons-nous la phrase d’Alice:

Même si je changeais mon comportement, mon action individuelle ne résoudrait pas nos problèmes.

Une première interprétation de cette phrase est la suivante:

Les petits changements ne vont pas résoudre les grands problèmes : une victime de la pauvreté de moins ne vas pas affecter le développement économique d’un pays pauvre; un végétarien ne va pas mettre fin à l’élevage industriel.

A ce premier type d’objection il y a une réponse simple et correcte. Ceux qui objectent de cette façon utilisent implicitement une fraction de ce type :

Impact individueltaille du probleˋme\frac{\text{Impact individuel}}{\text{taille du problème}}

Par exemple, faire un don à une ONG luttant contre l’extrême pauvreté au Kenya est intuitivement rattaché au problème de la pauvreté dans le monde. Devenir végétarien correspond au but de mettre fin à l’élevage industriel. Dans ces deux cas, le dénominateur de la fraction est très grand : votre impact individuel ne représente qu’une partie infime du problème que vous souhaitez résoudre. Mais il est fallacieux d’utiliser cette fraction. Pour décider si une action en vaut la peine, il faut comparer ses bénéfices à ses coûts, et non pas à la taille d’un autre problème. Si vous souhaitez maximiser votre impact positif, c’est simplement le numérateur qu’il faut maximiser. Le dénominateur est sans conséquence. L’habitant du village Kenyan souhaite seulement atteindre une vie meilleure, le niveau de la pauvreté mondiale lui importe peu. La poule élevée en batterie souhaite seulement échapper à sa vie de souffrance, quoi qu’il arrive à la production mondiale de viande[1]. La question qu’il faut plutôt vous poser est quelle serait la manière de les aider le plus possible.

Un semblant de paradoxe

Ce dont je souhaite en réalité parler ici est la seconde interprétation de l’objection d’Alice, plus sophistiquée. Au lieu d’avancer que votre impact personnel est très petit par rapport à une autre grandeur, l’argument est cette fois bien que l’effet de votre action individuelle est nul.

Imaginons qu’Alice ne fasse le discours suivant: “Réfléchis à ce qui se déroule réellemet lorsque tu agis à une échelle individuelle. Quand tu décides de ne pas acheter de viande au supermarché, le paquet que tu laisses sur l’étagère est composé d’animaux qui sont déjà morts. Ce n’est donc pas eux que tu aides. Mais tu raisonnes ainsi: “si je n’achète pas de viande, le supermarché s’ajustera à cette réduction de demande en commandant moins de viande, ce qui finira par réduire l’offre de viande et ainsi le nombre d’animaux en élevage”. Mais ce raisonnement n’est pas correct. Les décisions du supermarché ne dépendent pas de ton choix. Le supermarché réduira sa demande de viande uniquement s’il observe une réduction importante de la consommation, par exemple 2% de son inventaire. Ta réduction individuelle sera trop petite pour affecter le choix du supermarché. Les gérants ne remarqueront même pas ton choix, masqué par les variations aléatoires de la consommation de viande.

De même, regardons comment fonctionne l’ONG. Elle opère actuellement des écoles dans 5 villages. Pour établir une école dans un sixième village, il lui faut 100 000€ par an de dons supplémentaires pour payer les enseignants. Si elle n’en recoit que 99 999€, elle ne pourra pas les payer, et conservera l’argent dans son compte en banque. À moins que l’ONG ne soit déjà à 90 000€ ou plus, un don de 10 000€ n’aura donc aucun impact.

Un troisième exemple: imaginons qu’un tremblement de terre ne frappe le Népal. Une ONG népalaise organise en urgence l’achat de matériel médical à une entreprise pharmaceutique Indienne. Pour des raisons logistiques, l’entreprise ne vend le matériel qu’en incréments de 100 000€. Comme pour l’école dans le village Kenyan, il est très improbable que votre don soit celui qui permet tout juste à l’ONG d’acheter un incrément de plus.2

Alice a raison d’observer que la grande majorité des petits dons ou un petits changements de comportement n’ont aucun impact. Pourtant, un petit nombre d’entre eux ont un impact demesuré. Par exemple, le donateur marginal qui fait passer l’ONG de 99 999€ à 100 000€ donne lieu à la construction d’une école avec un seul euro!

Fonction en escalier

Une fonction en escalier. Ici, certains mouvements vers la droite le long de l’axe des abcisses (les dons yy) n’ont aucun effet sur l’impact uu de l’organisation, alors que certains très petits mouvements ont un grand impact en passant d’un palier à un autre.

Il faudrait donc, en théorie, tout faire pour être le donateur marginal, ou le consommateur qui s’abstient d’acheter l’unique portion de viande qui ferait basculer la décision du supermarché.

La solution du paradoxe se trouve dans le fait qu’un ciblage si précis est impossible en pratique. Dans les exemples simpifiés ci-dessus, il faudrait connaitre en détail la situation financière des ONG ou l’inventaire du supermarché, et de plus prédire le comportement de tous les autres donateurs et conommateurs. De surcroît, en réalité les procédures de décision qu’appliquent ces institutions sont bien plus complexes que je ne l’ai fait paraître. Il faudrait prendre en compte toute la chaîne de production de la viande, ou encore toutes les opportunités et contraintes auxquelles fait face l’ONG.

Plusieurs fonctions en escalier

En réalité, nous sommes ignorants quant à laquelle d’un grand nombre de fonctions en escalier correspondent à la réalité. En moyennant ces fonctions, nous arrivons à nouveau à une fonction linéaire.

Nous sommes donc totalement ignorants quant à l’identité du donateur marginal. Nous conaissons seulement la probabilité d’être au point de bascule, par exemple 10% avec un don de 10 000€ et des incréments de 100 000€. Il serait possible de réduire notre incertitude quant à l’identité du point de bascule, par exemple en construisant une modéalisation mathématique extrêmement complexe de la chaine de production de la viande. Mais en pratique cette procédure serait bien plus couteuse que le don lui-même.

Alice oublie de mettre en balance cette probablité de succès avec la taille du bénéfice potentiel. Autrement dit, si la probabilité de succès est pp et la taille du bénéfice uu, la quantité qui nous intéresse est l’espérance mathématique pupu. Alice comment l’erreur de ne considérer que pp. En général, dans ce type de cas, pp est très petit mais uu est très grand, et ce de manière proportionelle. Par exemple, si p=10p=10%, u=une eˊcoleu=\text{une école}, alors pupu correspond à un dixième de la valeur d’une école: exactement le même ratio que celui entre la taille du don (10 000€) et le cout d’une école (100 000€).

  1. Une autre manière de voir cet argument est d’observer que la valeur du dénominateur est de toute façon arbitraire. Il catégorise votre action comme visant à résoudre un problème dont les limites sont arbitrairement choisies. Le don contre la pauvreté pourrait aussi bien être rattaché au but de rendre les plus heureux les habitants du village ou agit l’ONG. Le choix de devenir végétarien pourrait être reformulé comme visant à aider les poules de votre région plutôt que tous les animaux d’élevage industriel dans le monde. La fraction est alors plusieurs milliers de fois plus grande, mais il n’y a aucune raison de préférer un dénominateur à l’autre. 

  2. Pour être plus réaliste, il faudrait ajouter plusieurs périodes au modlèle: prendre en compte le fait que l’ONG décidera alors d’établir l’école un an plus tard. Mais le scénario serait le même en substance. Un an après votre don de 10 000€, il est tout aussi peu probable que l’ONG dispose de fonds exactement entre 90 000€ et 100 000€. Et de même pour la troisième année. 

June 12, 2017

A better formalism for interpreting confidence intervals

When we take a sample mean, we should think of it as a random variable, and our measured sample mean as a realisation of that random variable. The sample mean is a random variable because it is the result of random sampling. Repeated sampling involves observing repeated realisations of the random variable.

We should think of confidence intervals around this mean as realisations of a random interval, an interval whose bounds are random variables rather than real numbers. This is an attractive formalism because it resolves many confusions around the interpretation of confidence intervals.

Suppose the true population mean is the number YY. The mean of a random sample from this population is the random variable yˉ\bar{y}. Then the random interval

[yˉ1.96se(yˉ),yˉ+1.96se(yˉ)][ \bar{y} - 1.96 se(\bar{y}) , \bar{y} + 1.96 se(\bar{y}) ]

has an approximately 95% probability of containing YY.

Suppose in our sample yˉ\bar{y} takes the realisation 12301230 and se(yˉ)se(\bar{y}) takes the realisation 5.45.4. So an instance of the above random interval is the confidence interval:

[12301.965.4,1230+1.965.4][ 1230 - 1.96 * 5.4 , 1230 + 1.96 * 5.4 ]

The confidence interval either contains or does not contain YY.

In full, my proposed interpretation schema is:

[12301.965.4,1230+1.965.4][ 1230 - 1.96 * 5.4 , 1230 + 1.96 * 5.4 ],

is a realisation of

[yˉ1.96se(yˉ),yˉ+1.96se(yˉ)][ \bar{y} - 1.96 se(\bar{y}) , \bar{y} + 1.96 se(\bar{y}) ],

and the probability

P(Y[yˉ1.96se(yˉ),yˉ+1.96se(yˉ)])=0.95P( Y \in[ \bar{y} - 1.96 se(\bar{y}) , \bar{y} + 1.96 se(\bar{y}) ]) = 0.95.

This formalism has several advantages:

  • robustness: distinguishing random intervals from confidence intervals means it’s much harder to get confused into making an incorrect probabilistic statement about the non-probabilistic object YY.
  • parsiomy: we express everything we want using only probabilities, random variables, and intervals, three well-understood notions.
  • relevance: our interpretation only involves the objects we actually have (a random interval and a confidence interval). We need not make reference to (hypothetical) repeated sampling.

The ugly and the bad

Unfortunately, my preferred formalism does not appear to be popular. Let me show some of the alternatives I have seen and explain their downsides and how my proposal does better.

1

Oxford department of statistics:

The interval is random, not the parameter. Thus, we talk of the probability of the interval containing the parameter, not the probability of the parameter lying in the interval.

This is the worst example, and is admittedly rarely seen in print. But in speech I’ve seen it used often, even by academics who were trying to explain the correct interpretation of confidence intervals! The problem with this of course is that once you write it down in mathematical language, the probability of the interval containing the parameter is exactly the same object as the probability of the parameter lying in the interval. In our example it is simply P(Y[12301.965.4,1230+1.965.4])P(Y \in [ 1230 - 1.96 * 5.4 , 1230 + 1.96 * 5.4 ]). It is equal to 1 or 0.

2

Quantitative Economics lecture notes for Oxford undergraduates:

“Were this procedure to be repeated on multiple samples, the calculated confidence interval (which would differ for each sample) would encompass the true population parameter 95% of the time.”

I don’t like this because:

  • It invokes the clunky counterfactual “were this procedure to be repeated”. What if it’s impossible to take repeated samples? We still want to be able to make statements about our confidence interval.
  • It doesn’t have a clear mathematical formalisation. how do I write “95% of the time” in terms of probabilities?
  • The actual confidence interval we have is nowhere mentioned. For what is supposed to be an interpretation of that object, that’s a little confusing.

My formalism solves these three problems.

3

Wikipedia:

“There is a 90% probability that the calculated confidence interval from some future experiment encompasses the true value of the population parameter.”

Similar complaint here: why do we need to refer to future experiments? We want an interpretation of the confidence interval we actually have.

4

Harvard University:

For this reason, for a 95% CI, we say that we have 95% confidence that the interval will cover the true population mean. We use the term ‘confidence’ instead of probability because although the sample mean is random, the single interval we calculate is fixed. We also cannot talk about the probability that the population mean will lie within a certain interval, since it is also fixed.

This needlessly introduces the new concept of ‘confidence’, which is bound to cause confusion. It’s much better to use probabilities, a concept we already understand and for which we have a formal notation.

June 10, 2017

Consistent Vegetarianism and the Suffering of Wild Animals - Journal of Practical Ethics

A revised version of the essay I wrote for the Uehiro Prize has been published in the Journal of Practical Ethics.

Abstract:

Ethical consequentialist vegetarians believe that farmed animals have lives that are worse than non-existence. In this paper, I sketch out an argument that wild animals have worse lives than farmed animals, and that consistent vegetarians should therefore reduce the number of wild animals as a top priority. I consider objections to the argument, and discuss which courses of action are open to those who accept the argument.
May 25, 2017